Description length and dimensionality reduction in functional data analysis
نویسندگان
چکیده
In this paper we investigate the use of description length principles to select an appropriate number of basis functions for functional data. We provide a flexible definition of the dimension of a random function that is constructed directly from the Karhunen–Loève expansion of the observed process. Our results show that although the classical, principle component variance decomposition technique will behave in a coherent manner, in general, the dimension chosen by this technique will not be consistent. We describe two description length criteria, and prove that they are consistent and that in low noise settings they will identify the true finite dimension of a signal that is embedded in noise. Two examples, one from mass-spectroscopy and the one from climatology, are used to illustrate our ideas. We also explore the application of different forms of the bootstrap for functional data and use these to demonstrate the workings of our theoretical results.
منابع مشابه
2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 58 شماره
صفحات -
تاریخ انتشار 2013